These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Trichome Transcripts as Efficiency Control for Synthetic Biology and Molecular Farming.
    Author: Becker R, Görner C, Reichman P, Dissmeyer N.
    Journal: Methods Mol Biol; 2022; 2379():265-276. PubMed ID: 35188667.
    Abstract:
    A variety of methods for studying glandular leaf hairs (trichomes) as multicellular micro-organs are well established for synthetic biology platforms like tobacco or tomato but rather rare for nonglandular and usually single-celled trichomes of the model plant Arabidopsis thaliana. A thorough isolation of-ideally intact-trichomes is decisive for further biochemical and genomic analyses of primary and secondary metabolic compounds, enzymes, and especially transcripts to monitor initial success of an engineering approach. While isolation of tomato or tobacco trichomes is rather easy, by simply freezing whole plants in liquid nitrogen and brushing off trichomes, this approach does not work for Arabidopsis. This is mainly due to damage of trichome cells during the collection procedure and very low yield. Here, we provide a robust method for a virtually epithelial cell-free isolation of Arabidopsis trichomes. This method is then joined with an RNA isolation protocol to perform mRNA analysis on extracts of the isolated trichomes using a semi-quantitative RT-PCR setup.
    [Abstract] [Full Text] [Related] [New Search]