These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reduction of phosphatidylcholine turnover in a Nb 2 lymphoma cell line after prolactin treatment. A novel mechanism for control of phosphatidylcholine levels in cells. Author: Ko KW, Cook HW, Vance DE. Journal: J Biol Chem; 1986 Jun 15; 261(17):7846-52. PubMed ID: 3519613. Abstract: Phosphatidylcholine metabolism was investigated in Nb 2 rat node lymphoma cells, a cell line which is dependent on prolactin for growth in culture. Treatment of stationary cultures with prolactin stimulated the incorporation of [methyl-3H]choline into phosphatidylcholine (1.7-fold after 4 h) and its aqueous precursors, mainly phosphocholine (1.9-fold after 4 h and 2.7-fold after 10 h). These effects were blocked by cycloheximide. Pulse-chase studies demonstrated that the reaction catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) was rate-limiting for phosphatidylcholine synthesis in Nb 2 cells and that the rate of this reaction was not altered by prolactin treatment. The cell-free activity of choline kinase (EC 2.7.1.32) was found to increase in correspondence with the increase in choline incorporation. This induction of choline kinase was also blocked by cycloheximide. The activities of the other enzymes of phosphatidylcholine synthesis were unchanged. These results suggest that phosphatidylcholine biosynthesis was not altered in Nb 2 cells after prolactin treatment. However, phosphatidylcholine levels increased in prolactin-treated cells (1.4-fold after 16 h). Turnover of labeled phosphatidylcholine was markedly reduced in prolactin-treated cells. Calculated turnover rates for phosphatidylcholine averaged 4.2-fold lower in prolactin-treated cells, whereas the synthetic rates were similar in prolactin-treated and stationary cells. Thus, Nb 2 cells utilize a novel mechanism, reduction of turnover, to regulate the cellular levels of phosphatidylcholine during growth.[Abstract] [Full Text] [Related] [New Search]