These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses - A finite element study.
    Author: Orava H, Huang L, Ojanen SP, Mäkelä JTA, Finnilä MAJ, Saarakkala S, Herzog W, Korhonen RK, Töyräs J, Tanska P.
    Journal: J Mech Behav Biomed Mater; 2022 Apr; 128():105129. PubMed ID: 35219139.
    Abstract:
    Subchondral bone structure has been observed to change in osteoarthritis (OA). However, it remains unclear how the early-stage OA changes affect the mechanics (stresses and strains) of the osteochondral unit. In this study, we aim to characterize the effect of subchondral bone structure and mechanical properties on the osteochondral unit mechanics. A 3-D finite element model of the osteochondral unit was constructed based on a rabbit femoral condyle μCT data and subjected to creep loading in indentation. Trabecular bone volume fraction, subchondral bone plate thickness, and equilibrium modulus were varied (including experimentally observed changes in early OA) to characterize the effect of these parameters on the osteochondral unit mechanics. At the end of the creep phase, the maximum principal strain at the bone surface of the cartilage-bone interface was decreased by 50% when the trabecular bone volume fraction was reduced from 48% to 28%. The maximum principal stress at the same location was decreased by 36% when plate thickness was reduced by 100 μm (-31%). In cartilage, small changes in the mechanics were seen near the cartilage-bone interface with a considerably thinner (-31%) plate. The changes in trabecular bone volume fraction, subchondral bone thickness and plate equilibrium modulus did not substantially affect the cartilage mechanics. Our results suggest that experimentally observed changes that occur in the subchondral bone structure in early OA have a minimal effect on cartilage mechanics under creep indentation loading; clear changes in the cartilage mechanics were seen only with an unrealistically soft subchondral bone plate.
    [Abstract] [Full Text] [Related] [New Search]