These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurochemistry evaluated by MR spectroscopy in a patient with SPTAN1-related developmental and epileptic encephalopathy. Author: Sakata Y, Sano K, Aoki S, Saitsu H, Takanashi JI. Journal: Brain Dev; 2022 Jun; 44(6):415-420. PubMed ID: 35219564. Abstract: BACKGROUND: Mutation of the SPTAN1 gene, which encodes α-fodrin (non-erythrocyte α-II spectrin), is one of the causes of developmental and epileptic encephalopathies (DEEs). SPTAN1-related DEE is radiologically characterized by cerebral atrophy, especially due to white matter volume reduction, hypomyelination, pontocerebellar hypoplasia, and a thin corpus callosum, however, no neurochemical analysis has been reported. CASE REPORT: A Japanese infant female presented with severe psychomotor delay, tonic spasms, and visual impairment. Whole-exome sequencing revealed a de novo variant of the SPTAN1 gene, leading to a diagnosis of SPTAN1-related DEE. MR spectroscopy at ages 5 months, 11 months, and 1 year and 4 months revealed decreased N-acetylaspartate and choline-containing compounds, and increased glutamate or glutamine. CONCLUSION: The decreased concentrations of N-acetylaspartate and choline-containing compounds may have resulted from neuroaxonal network dysfunction and hypomyelination, respectively. The increased glutamate or glutamine may have reflected a disrupted glutamate-glutamine cycle caused by dysfunction of exocytosis, in which α-fodrin plays an important role. MR spectroscopy revealed neurochemical derangement in SPTAN1-related DEE, which may be a possible pathomechanism and will be useful for its diagnosis.[Abstract] [Full Text] [Related] [New Search]