These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Population pharmacokinetics of piperacillin/tazobactam in critically ill Korean patients and the effects of extracorporeal membrane oxygenation.
    Author: Kim YK, Kim HS, Park S, Kim HI, Lee SH, Lee DH.
    Journal: J Antimicrob Chemother; 2022 Apr 27; 77(5):1353-1364. PubMed ID: 35224630.
    Abstract:
    OBJECTIVES: To explore extracorporeal membrane oxygenation (ECMO)-related alterations of the pharmacokinetics (PK) of piperacillin/tazobactam and determine an optimal dosage regimen for critically ill adult patients. METHODS: Population PK models for piperacillin/tazobactam were developed using a non-linear mixed effect modelling approach. The percentage of time within 24 h for which the free concentration exceeded the MIC at a steady-state (50%fT>MIC, 100%fT>MIC, and 100%fT>4×MIC) for various combinations of dosage regimens and renal function were explored using Monte-Carlo simulation. RESULTS: A total of 226 plasma samples from 38 patients were used to develop a population PK model. Piperacillin/tazobactam PK was best described by two-compartment models, in which estimated glomerular filtration rate (eGFR), calculated using CKD-EPI equation based on cystatin C level, was a significant covariate for total clearance of each piperacillin and tazobactam. ECMO use decreased the central volume of distribution of both piperacillin and tazobactam in critically ill patients. Patients with Escherichia coli or Klebsiella pneumoniae infection, but not those with Pseudomonas aeruginosa infection, exhibited a PK/pharmacodynamic target attainment >90% when the target is 50%fT>MIC, as a result of applying the currently recommended dosage regimen. Prolonged or continuous infusion of 16 g/day was required when the treatment goal was 100%fT>MIC or 100%fT>4×MIC, and patients had an eGFR of 130-170 mL/min/1.73 m2. CONCLUSIONS: ECMO use decreases piperacillin/tazobactam exposure. Prolonged or continuous infusion can achieve the treatment target in critically ill patients, particularly when MIC is above 8 mg/L or when patients have an eGFR of 130-170 mL/min/1.73 m2.
    [Abstract] [Full Text] [Related] [New Search]