These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Urchin like inverse spinel manganese doped NiCo2O4 microspheres as high performances anode for lithium-ion batteries. Author: Liang Z, Tu H, Kong Z, Yao X, Xu D, Liu S, Shao Y, Wu Y, Hao X. Journal: J Colloid Interface Sci; 2022 Jun 15; 616():509-519. PubMed ID: 35228047. Abstract: The ternary transition metal oxides are promising anode material for lithium-ion batteries (LIBs). However, their practical applications are greatly hindered by the poor conductivity and huge volume changes. To solve the issues, urchin-like inverse spinel manganese (Mn) doped NiCo2O4 hierarchical microspheres were fabricated through a facile hydrothermal approach and subsequent annealing treatment. The as-obtained Mn-doped NiCo2O4 hold microsphere and sharp fiber-shaped needle multilevel nanoscale architecture, which effectively shortened Li ions (Li+) transmission path and improved the conductivity. In addition, the hierarchical urchin-like Mn-doped NiCo2O4 synthesized at annealing temperature (600 °C) manifested a larger capacity and better cycling performance by controlling the crystallinities and morphologies. As expected, it displays an outstanding cycling performance with a reversible capacity of about 945 mAh g-1 after 500 cycles at 2000 mA g-1. The kinetic analysis and galvanostatic intermittent titration technique (GITT) testing also verifies the superior pseudocapacitance contribution and fast elevated ion migration of Li+. Our work provides a promising design to develop suitable anode materials based on transition metal oxides for high-performance LIBs.[Abstract] [Full Text] [Related] [New Search]