These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrocatalytic oxidation of low concentration cefotaxime sodium wastewater using Ti/SnO2-RuO2 electrode: Feasibility analysis and degradation mechanism. Author: Niu Y, Yin Y, Xu R, Yang Z, Wang J, Xu D, Yuan Y, Han J, Wang H. Journal: Chemosphere; 2022 Jun; 297():134146. PubMed ID: 35231478. Abstract: In this research, Ti/SnO2-RuO2 stable anode was successfully prepared by thermal decomposition method, and low concentration cefotaxime sodium (CFX) was degraded by green and sustainable electrocatalytic oxidation technology. The electrocatalytic activity and stability of the Ti/SnO2-RuO2 coating electrode were studied according to the polarization curve of oxygen and chlorine evolution. The effects of current density, initial concentration, pH, electrolyte concentration, and other technological parameters on the degradation efficiency were discussed. Orthogonal experiment results indicated that when the current density was 25 mA cm-2, concentration of electrolyte was 5 mM and the pH value was 7, the best CFX removal rate of 86.33% could be obtained. The degradation efficiency of electrocatalytic oxidation was discussed through electrochemical analysis. Fourier transform infrared spectroscopy was used to analyze the different inlet and outlet stages before and after the degradation of CFX, and the possible degradation process was discussed. Therefore, the electrocatalytic oxidation of Ti/SnO2-RuO2 electrode was a clean and efficient technology, which could be widely used in the treatment of CFX wastewater.[Abstract] [Full Text] [Related] [New Search]