These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In-situ polymerized composite polymer electrolyte with cesium-ion additive enables dual-interfacial compatibility in all-solid-state lithium-metal batteries.
    Author: Wu M, Liu D, Qu D, Lei J, Zhang X, Chen H, Tang H.
    Journal: J Colloid Interface Sci; 2022 Jun; 615():627-635. PubMed ID: 35231694.
    Abstract:
    Solid composite polymer electrolytes (CPEs) that combine the advantages of inorganic and organic electrolytes are regarded as the most appealing candidates for all-solid-state lithium-metal batteries (ASSLMBs). Nonetheless, the interfacial incompatibility issues resulting from poor cathode/electrolyte contact and uncontrolled dendrite growth on Li anode are fundamentally challenging for the development of ASSLMBs. Herein, we design a solid CPE with dual-interface compatibility based on in-situ thermal polymerization of a precursor solution containing polymer monomer, cesium-ion (Cs+), and inorganic Li+ conductor. The resultant Cs+ containing CPE creates intimate interface contact with the cathode while achieving high interfacial stability with the Li-metal anode. Accordingly, this solid electrolyte can perform reversible Li plating/stripping over 750 h at 0.3 mA cm-2 and a critical current density (CCD) of 0.8 mA cm-2, in sharp contrast with its Cs+-free counterpart (failure after 11 h and a CCD of 0.5 mA cm-2). Furthermore, the full ASSLMBs (Li|LiFePO4) enable decent capacity retention of 90% over 100 cycles at 0.5C and high Coulombic efficiency of nearly 100%. Therefore, constructing solid-state electrolytes with dual-interfacial compatibility may be an effective avenue to achieve high-performance ASSLMBs.
    [Abstract] [Full Text] [Related] [New Search]