These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection and identification of hazardous organic pollutants from distillery wastewater by GC-MS analysis and its phytotoxicity and genotoxicity evaluation by using Allium cepa and Cicer arietinum L. Author: Chowdhary P, Singh A, Chandra R, Kumar PS, Raj A, Bharagava RN. Journal: Chemosphere; 2022 Jun; 297():134123. PubMed ID: 35240156. Abstract: Distillery industry generates a huge amount of wastewater, which contains a high strength of organic and inorganic load. Accordingly, this study aims to analyze the physico-chemical pollution parameters and the occurrence of phytotoxic, cytotoxic and genotoxic pollutants in wastewater. The result revealed that values of wastewater parameters were recorded as 13268 mg l-1 (BOD), 25144 mg l-1 (COD), 25144 mg l-1 (TS), and 6634 mg l-1 (phosphate), while pH was alkaline. The organic compounds detected by GC-MS were quercetin 7,3',4'-trimethoxy, octadecadienoic acid, propanoic acid, glycocholic acid methyl ester, cantaxanthin, etc. The Allium cepa was used for the toxicity test with different concentrations of wastewater showed a significant level of reduction in root growth and length after exposure and the maximum reduction was at 25% and 20%. Phytotoxicity studies were performed using Cicer arietinum L. with different concentrations of wastewater, which showed adverse effects on seed germination, root length, and the effect was associated with the increasing concentration of wastewater. A. cepa root tips were used for the analysis of mitotic index (MI), nuclear abnormalities (NA), and chromosomal aberrations (CA). MI was decreasing significantly from 72% (control) to 33%, 22%, 23%, 21%, and 18% at 5%, 10%, 15%, 20%, and 25% wastewater concentration, respectively. The A. cepa root tip cells showed chromosomal aberrations and nuclear abnormalities like vagrant, stickiness, chromosomal loss, c-mitosis, binucleated, micronuclei, and aberrant cell. This study concluded that the wastewater treatment process is insufficient and the discharged waste needs a proper assessment to know the associated health risk.[Abstract] [Full Text] [Related] [New Search]