These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surface Engineering of Defective and Porous Ir Metallene with Polyallylamine for Hydrogen Evolution Electrocatalysis.
    Author: Deng K, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Wang H, Wang L.
    Journal: Adv Mater; 2022 May; 34(18):e2110680. PubMed ID: 35263473.
    Abstract:
    The design of defects and porous structures into metallene with functional surfaces is highly desired to improve its permeability, surface area, and active sites, but remains a great challenge. In this work, polyallylamine-encapsulated Ir metallene with defects and porous structure (Ir@PAH metallene) is easily fabricated by a one-step wet chemical reduction method. The Ir@PAH metallene exhibits excellent hydrogen evolution reaction (HER) performance with an overpotential of only 14 mV at 10 mA cm-2 , a low Tafel slope of 31.2 mV dec-1 , and almost no activity decay after stability test. The abundant defects and pores as well as several-atomic-layer nanosheet structures of Ir@PAH metallene provide a large specific surface area, high conductivity, and efficient mass transport/diffusion. In addition, surface-functionalized PAH molecules can modulate the electronic structure through strong Ir-N interaction and act as proton carriers to capture hydrogen ions, which is very beneficial for the HER in acidic media. This work provides a useful strategy for the synthesis of the defective and porous metallene with functionalized surfaces for various catalytic applications.
    [Abstract] [Full Text] [Related] [New Search]