These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deep learning to estimate cardiac magnetic resonance-derived left ventricular mass. Author: Khurshid S, Friedman SF, Pirruccello JP, Di Achille P, Diamant N, Anderson CD, Ellinor PT, Batra P, Ho JE, Philippakis AA, Lubitz SA. Journal: Cardiovasc Digit Health J; 2021 Apr; 2(2):109-117. PubMed ID: 35265898. Abstract: BACKGROUND: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited. OBJECTIVE: To develop an open-source deep learning model to estimate CMR-derived LV mass. METHODS: Within participants of the UK Biobank prospective cohort undergoing CMR, we trained 2 convolutional neural networks to estimate LV mass. The first (ML4Hreg) performed regression informed by manually labeled LV mass (available in 5065 individuals), while the second (ML4Hseg) performed LV segmentation informed by InlineVF (version D13A) contours. We compared ML4Hreg, ML4Hseg, and InlineVF against manually labeled LV mass within an independent holdout set using Pearson correlation and mean absolute error (MAE). We assessed associations between CMR-derived LVH and prevalent cardiovascular disease using logistic regression adjusted for age and sex. RESULTS: We generated CMR-derived LV mass estimates within 38,574 individuals. Among 891 individuals in the holdout set, ML4Hseg reproduced manually labeled LV mass more accurately (r = 0.864, 95% confidence interval [CI] 0.847-0.880; MAE 10.41 g, 95% CI 9.82-10.99) than ML4Hreg (r = 0.843, 95% CI 0.823-0.861; MAE 10.51, 95% CI 9.86-11.15, P = .01) and InlineVF (r = 0.795, 95% CI 0.770-0.818; MAE 14.30, 95% CI 13.46-11.01, P < .01). LVH defined using ML4Hseg demonstrated the strongest associations with hypertension (odds ratio 2.76, 95% CI 2.51-3.04), atrial fibrillation (1.75, 95% CI 1.37-2.20), and heart failure (4.67, 95% CI 3.28-6.49). CONCLUSIONS: ML4Hseg is an open-source deep learning model providing automated quantification of CMR-derived LV mass. Deep learning models characterizing cardiac structure may facilitate broad cardiovascular discovery.[Abstract] [Full Text] [Related] [New Search]