These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional Redundancy of FLOWERING LOCUS T 3b in Soybean Flowering Time Regulation. Author: Su Q, Chen L, Cai Y, Chen Y, Yuan S, Li M, Zhang J, Sun S, Han T, Hou W. Journal: Int J Mol Sci; 2022 Feb 24; 23(5):. PubMed ID: 35269637. Abstract: Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.[Abstract] [Full Text] [Related] [New Search]