These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals.
    Author: Hoang NT, Nguyen VT, Minh Tuan ND, Manh TD, Le PC, Van Tac D, Mwazighe FM.
    Journal: Chemosphere; 2022 Jul; 298():134197. PubMed ID: 35276111.
    Abstract:
    This study investigated the degradation of methylene blue (MeB), methyl orange (MeO), and rhodamin B (RhB) by the UV/Persulfate (UV/PS) process. The dye degradation in the investigated UV-based Advanced Oxidation Processes (UV/AOPs) followed the first-order kinetic model. The second-order rate constant of the dyes with •OH, SO4•-, and CO3•- were calculated and found to be: k•OH,MeB = 5.6 × 109 M-1 s-1, [Formula: see text]  = 3.3 × 109 M-1 s-1, [Formula: see text]  = 6.9 × 107 M-1 s-1; k•OH,MeO = 3.2 × 109 M-1 s-1, [Formula: see text]  = 13 × 109 M-1 s-1, [Formula: see text]  = 4.4 × 106 M-1 s-1; k•OH,RhB = 14.8 × 109 M-1 s-1, [Formula: see text]  = 5 × 109 M-1 s-1, [Formula: see text]  = 1 × 107 M-1 s-1. The steady-state concentrations of •OH and SO4•- (including other reactive species) were determined using both chemical probes and modeling methods (Kintecus® V6.8). In the UV/PS, the dye degradation depends on the pH of the solution with the order: kdye (at pH of 7) > kdye (in acidic conditions) > kdye (in alkaline conditions). The presence of water matrices had different impacts on dye degradation: 1) The HCO3- and Cl- promoted the degradation efficiency of one dye, but also inhibited the degradation of other dyes; 2) Humic acid (HA) inhibited dye degradation as it scavenged both •OH and SO4•-. The degradation of the dyes by UV/PS was also compared with the UV/Chlorine (UV/HOCl) and UV/H2O2 and it was established that: 1) In UV/PS and UV/HOCl, SO4•- and RCS contributed to dye degradation more than •OH, while •OH played a major role in dye degradation by UV/H2O2; 2) The calculated toxicity in UV/PS was the lowest probably due to the low toxicity of by-products; 3) For MeO and RhB, the UV/PS process is more beneficial for the total organic carbon (TOC) removal compared to that of the UV/HOCl and UV/H2O2 processes; 4) The UV/PS showed lower cost than the UV/HOCl and UV/H2O2 systems for MeO, and RhB degradation but higher cost for MeB removal.
    [Abstract] [Full Text] [Related] [New Search]