These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferential Adsorption Performance of Ethane in a Robust Nickel-Based Metal-Organic Framework for Separating Ethane from Ethylene. Author: Zhang J, Liu Z, Liu H, Xu F, Li Z, Wang X. Journal: ACS Omega; 2022 Mar 08; 7(9):7648-7654. PubMed ID: 35284739. Abstract: Development of an ethane-selective adsorbent to separate ethane from ethylene is a challenging issue with great significance for ethylene purification. The adsorptive separation technique based on physical adsorption holds a great promise to address this issue. Herein, we report a robust ethane-selective metal-organic framework, Ni(BODC)(TED), and investigate its separation performance on C2H6/C2H4. The as-synthesized Ni(BODC)(TED) exhibits excellent water vapor stability and high capacity of C2H6 molecules with an uptake of 3.36 mmol/g at 298 K and 100 kPa, higher than those of many adsorbents reported in recent years. Its C2H6/C2H4 selectivity predicted by the ideal adsorbed solution theory (IAST) model reaches 1.79. A molecular simulation is applied to unveil the preferential adsorption mechanism of ethane. Calculation shows that five strong C-H···H interactions are formed between C2H6 and the framework of Ni(BODC)(TED), and the isosteric heat of ethane on Ni(BODC)(TED) is 27.02 kJ/mol, higher than that of ethylene, resulting in preferential adsorption of ethane. Ni(BODC)(TED) would become a promising member of the family of ethane-selective materials for the industrial separation of ethane from ethylene.[Abstract] [Full Text] [Related] [New Search]