These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The synthesis of an amended membrane coated with graphene oxide and dopamine and guanidyl-based modifier and its antifouling properties. Author: Dongmei L, Wenjie L, Shubin L, Zhiqiang Z, Junyu L, Tianyue Z, Xiaoyong L, Yi H, Haiqiang C, Zhicheng L. Journal: Water Sci Technol; 2022 Mar; 85(5):1470-1483. PubMed ID: 35290226. Abstract: The membrane fouling issue has aroused great concern. To improve their antifouling properties, surface grafting with oxidative deposition were employed to amend a polyvinylidene fluoride (PVDF) membrane. The modifiers were amino-modified graphene oxide (AMGO), dopamine (DPA) and 1,3-diaminoguanidine hydrochloride (DAGH). To take bovine serum albumin (BSA, 1 g/l) as an example of organic materials, BSA interception rate and pure water flux recovery rate increased to 93.65% and 66.74%, respectively, while the corresponding values for the original membrane were much lower (72.82% and 31.72%). The optimum synthesis conditions were found to be 1.5 mg/ml of DPA, 1 wt% of DAGH, 2 mg/ml of AMGO, 4 h of DPA oxidation deposition time and 1 h of AMGO grafting time. Many functional groups like C = N, -NH2, C = O and -OH improved the membrane surface hydrophilicity leading to a higher resistance to organic pollution. Dopamine and guanidyl facilitated the antimicrobial performance of the modified membrane, whose antimicrobial rate was up to 96%, while the raw membrane had no antimicrobial activity. The amended membrane possessed 40% higher mechanical strength than the initial one. It could withstand a high pumping suction force. The noteworthy property was that the irreversible fouling rate decreased by 55%. Therefore, the amended membrane could restore its flux much more easily.[Abstract] [Full Text] [Related] [New Search]