These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Author: Allikmets EYu, Danilov SM. Journal: Tissue Cell; 1986; 18(4):481-9. PubMed ID: 3529498. Abstract: Endothelial cells (EC) from human aorta, umbilical vein and pulmonary artery were grown in Medium 199 supplemented with 20% human serum (HS), endothelial cell growth factor (ECGF) from bovine and human brain (200 micrograms/ml) and heparin (100 micrograms/ml) in gelatin-coated flasks. Under these conditions cells rapidly proliferated and survived 15-25 passages (40-60 cumulative population doublings). When cells were cultured on plastic substrate and without growth factors a capillary-like network appeared after 3-4 weeks of growth. According to TEM, this network consisted of tubes with the lumen encircled by one or several cells. The reduction of serum concentration in the medium or the replacement of plasma-derived serum (PDS) for HS reduced the time of network formation to 3-5 days. S-180 conditioned medium mitogenic for EC induced a rapid spreading of the cells and a partial reversion to a two-dimensional monolayer structure. Trypsin inhibitor did not abolish the effect of tumour conditioned medium. Other EC mitogens, e.g. ECGF and fibroblast growth factor (FGF), also disorganized the capillary-like network. In a day or two the network was completely restored. In contrast, culturing EC on gelatin-coated substrate is a sufficient condition for monolayer formation from tubes and long-term maintenance. We suggest that mitogens can influence the EC morphology but that it is the nature of the substrate that determines the stage of large vessel EC differentiation.[Abstract] [Full Text] [Related] [New Search]