These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms' insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. Author: Elsayed MM, Elkenany RM, Zakaria AI, Badawy BM. Journal: Environ Sci Pollut Res Int; 2022 Aug; 29(36):54359-54377. PubMed ID: 35298798. Abstract: Listeria monocytogenes (L. monocytogenes) is frequently detected in ruminants, especially dairy cattle, and associated with the sporadic and epidemic outbreak of listeriosis in farms. In this epidemiological study, the prevalence, virulence, antibiotic resistance profiles, and genetic diversity of L. monocytogenes in three Egyptian dairy cattle farms were investigated. The risk factors associated with the fecal shedding of L. monocytogenes were analyzed. The L. monocytogenes strains from the three farms were categorized into distinct genotypes based on sampling site and sample type through enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). A total of 1896 samples were collected from animals, environments, and milking equipment in the three farms. Results revealed that 137 (7.23%) of these samples were L. monocytogenes positive. The prevalence of L. monocytogenes in the animal samples was high (32.1%), and the main environmental source of prevalent genotypes in the three farms was silage. For all sample types, L. monocytogenes was more prevalent in farm I than in farms II and III. Risk factor analysis showed seasonal variation in production hygiene. For all sample types, L. monocytogenes was significantly more prevalent in winter than in spring and summer. The level of L. monocytogenes fecal shedding was high likely because of increasing age, number of parities, and milk yield in dairy cattle. Two virulence genes, namely, hlyA & prfA, were also detected in 93 strains, whereas only one of these genes was found in 44 residual strains. Conversely, iap was completely absent in all strains. The strains exhibited phenotypic resistance to most of the tested antibiotics, but none of them was resistant to netilmicin or vancomycin. According to sample type, the strains from the animal samples were extremely resistant to amoxicillin (95.2%, 80/84) and cloxacillin (92.9%, 78/84). By comparison, the strains from the environmental samples were highly resistant to cefotaxime (86.95%, 20/23). Furthermore, 25 multi-antibiotic resistance (MAR) patterns were observed in L. monocytogenes strains. All strains had a MAR index of 0.22-0.78 and harbored antibiotic resistance genes, including extended-spectrum β-lactamase (blaCTX-M [92.7%] and blaDHA-1 [66.4%]), quinolones (qnrS [91.2%], qnrA [58.4%], parC [58.4%], and qnrB [51%]), macrolides (erm[B] [76.6%], erm(C) [1.5%], and msr(A) [27%]), trimethoprim (dfrD [65.7%]), and tetracyclines (tet(M) [41.6%], tet(S) [8%], and int-Tn [26.3%]). ERIC-PCR confirmed that the strains were genetically diverse and heterogeneous. A total of 137 isolated L. monocytogenes strains were classified into 22 distinct ERIC-PCR groups (A-V). Among them, ERIC E (10.2%) was the most prevalent group. These results indicated that environment and milking equipment served as reservoirs and potential transmission ways of virulent and multidrug-resistant L. monocytogenes to dairy animals, consequently posing threats to public health. Silage is the main environmental source of prevalent genotypes on all three farms. Therefore, hygienic measures at the farm level should be developed and implemented to reduce L. monocytogenes transmission inside dairy cattle farms.[Abstract] [Full Text] [Related] [New Search]