These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alfalfa transcriptome profiling provides insight into miR156-mediated molecular mechanisms of heat stress tolerance. Author: Arshad M, Hannoufa A. Journal: Genome; 2022 Jun 01; 65(6):315-330. PubMed ID: 35298891. Abstract: Heat is one of the major environmental stressors that negatively affects alfalfa production. Previously, we reported the role of microRNA156 (miR156) in heat tolerance; however, the mechanism and downstream genes involved in this process were not fully studied. To provide further insight, we compared an empty vector control and miR156-overexpressing alfalfa plants (miR156+) after exposing them to heat stress (40 °C) for 24 h. We collected leaf samples for transcriptome analysis to illustrate the miR156-regulated molecular mechanisms underlying the heat stress response. A total of 3579 differentially expressed genes (DEGs) were detected exclusively in miR156+ plants under heat stress using the Medicago sativa genome as a reference. GO and KEGG analysis indicated that these DEGs were mainly involved in "polysaccharide metabolism", "response to chemical", "secondary metabolism", "carbon metabolism", and "cell cycle". Transcription factors predicted in miR156+ plants belonged to the TCP family, MYB, ABA response element-binding factor, WRKY, and heat shock transcription factor. We also identified two new SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family gene members (SPL8a and SPL12a), putatively regulated by miR156. The present study provided a comprehensive transcriptome profile of alfalfa, identified a number of genes and pathways, and revealed an miR156-regulated network of mechanisms at the gene expression level to modulate heat responses in alfalfa.[Abstract] [Full Text] [Related] [New Search]