These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-183-5p overexpression in bone mesenchymal stem cell-derived exosomes protects against myocardial ischemia/reperfusion injury by targeting FOXO1. Author: Mao S, Zhao J, Zhang ZJ, Zhao Q. Journal: Immunobiology; 2022 May; 227(3):152204. PubMed ID: 35314383. Abstract: OBJECTIVE: Exosomes have been suggested to serve as possible drug delivery vehicles due to their nanometer-size range and capability of transferring biological materials to recipient cells. Thus, whether miR-183-5p-overexpressing bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) could protect against myocardial ischemia/reperfusion (MI/R) injury by targeting FOXO1 was investigated. METHODS: Exosomes were isolated from rat BMSCs, and ischemia/reperfusion (I/R) rat models were established. I/R rats were treated with Exo/NC-Exo/miR-183-5p-Exo/anti-miR-183-5p-Exo. Cardiac function, serum biochemical indices, apoptosis, myocardial infarction size, and the expression of miR-183-5p, FOXO1 and cleaved caspase 3 were assessed. Primary cardiomyocytes were isolated to establish hypoxia/reoxygenation (H/R) models to observe the function of miR-183-5p-Exo in vitro. RESULTS: Rats in the I/R group exhibited a decreased left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS) and left ventricular systolic pressure (LVSP) but an increased left ventricular end-diastolic pressure (LVEDP), myocardial infarct size and apoptosis index (AI). In addition, in I/R rats, miR-183-5p expression was decreased, but FOXO1 and cleaved caspase 3 expression was increased. Both Exo and miR-183-5p-Exo improved the above indices in I/R rats, but miR-183-5p-Exo showed better effects. However, anti-miR-183-5p-Exo reversed the protective effect of Exo. FOXO1 was a target gene of miR-183-5p. Experiments in vitro revealed that Exo and miR-183-5p-Exo suppressed apoptosis and oxidative stress injury in H/R-induced cardiomyocytes, whereas overexpressed FOXO1 reversed the protective role of miR-183-5p-Exo. CONCLUSION: BMSC-derived exosomal miR-183-5p could target FOXO1 to reduce apoptosis and oxidative stress in I/R cardiomyocytes and improve cardiac function, thereby protecting against MI/R injury.[Abstract] [Full Text] [Related] [New Search]