These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The impact of nucleic acid testing to detect human immunodeficiency virus, hepatitis C virus, and hepatitis B virus yields from a single blood center in China with 10-years review.
    Author: Wu D, Feng F, Wang X, Wang D, Hu Y, Yu Y, Huang J, Wang M, Dong J, Wu Y, Zhu H, Zhu F.
    Journal: BMC Infect Dis; 2022 Mar 23; 22(1):279. PubMed ID: 35321684.
    Abstract:
    BACKGROUND: Since 2010, the Blood Center of Zhejiang province, China, has conducted a pilot nucleic acid amplification testing (NAT) screening of blood donors for Hepatitis B virus (HBV), Hepatitis C virus (HCV), and Human immunodeficiency virus (HIV). This study aims to assess the results of NAT testing over 10 years to establish the effects and factors influencing NAT yields of HBV, HCV, and HIV. METHODS: Blood donations from seven different blood services were screened for HBV DNA, HCV RNA, and HIV RNA using 6 mini pools (6MP) or individual donation (ID)-NAT method between August 1, 2010, and December 31, 2019, at the NAT centralized screening center. We compared 3 transcription-mediated amplification (TMA) assays and 2 polymerase chain reaction (PCR) assays. Further, HBV, HCV, and HIV NAT yields were calculated and donor characteristics and prevalence of HBV NAT yields analyzed. Donors with HCV and HIV NAT yield were also followed up. RESULTS: 1916.31 per million donations were NAT screening positive overall. The NAT yields for HBV, HCV, HIV and non-discriminating reactive were 1062.90 per million, 0.97 per million, 1.45 per million, and 850.99 per million, respectively, which varied in the seven blood services and different years. HBV NAT yields were higher than those of HCV and HIV and varied across demographic groups. Risk factors included being male, old age, low education level, and first-time donors. We found no differences in NAT yields of HBV, HCV, and HIV between the 3 TMA and 2 PCR assays; nonetheless, statistically, significant differences were noted between the five assays. CONCLUSION: In summary, NAT screening in blood donations reduces the risk of transfusion-transmitted infections and shortens the window period for serological marker screening. Therefore, a sensitive NAT screening method, ID-NAT workflow, and recruitment of regular low-risk donors are critical for blood safety.
    [Abstract] [Full Text] [Related] [New Search]