These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multi-landmark environment analysis with reinforcement learning for pelvic abnormality detection and quantification.
    Author: Bekkouch IEI, Maksudov B, Kiselev S, Mustafaev T, Vrtovec T, Ibragimov B.
    Journal: Med Image Anal; 2022 May; 78():102417. PubMed ID: 35325712.
    Abstract:
    Morphological abnormalities of the femoroacetabular (hip) joint are among the most common human musculoskeletal disorders and often develop asymptomatically at early easily treatable stages. In this paper, we propose an automated framework for landmark-based detection and quantification of hip abnormalities from magnetic resonance (MR) images. The framework relies on a novel idea of multi-landmark environment analysis with reinforcement learning. In particular, we merge the concepts of the graphical lasso and Morris sensitivity analysis with deep neural networks to quantitatively estimate the contribution of individual landmark and landmark subgroup locations to the other landmark locations. Convolutional neural networks for image segmentation are utilized to propose the initial landmark locations, and landmark detection is then formulated as a reinforcement learning (RL) problem, where each landmark-agent can adjust its position by observing the local MR image neighborhood and the locations of the most-contributive landmarks. The framework was validated on T1-, T2- and proton density-weighted MR images of 260 patients with the aim to measure the lateral center-edge angle (LCEA), femoral neck-shaft angle (NSA), and the anterior and posterior acetabular sector angles (AASA and PASA) of the hip, and derive the quantitative abnormality metrics from these angles. The framework was successfully tested using the UNet and feature pyramid network (FPN) segmentation architectures for landmark proposal generation, and the deep Q-network (DeepQN), deep deterministic policy gradient (DDPG), twin delayed deep deterministic policy gradient (TD3), and actor-critic policy gradient (A2C) RL networks for landmark position optimization. The resulting overall landmark detection error of 1.5 mm and angle measurement error of 1.4° indicates a superior performance in comparison to existing methods. Moreover, the automatically estimated abnormality labels were in 95% agreement with those generated by an expert radiologist.
    [Abstract] [Full Text] [Related] [New Search]