These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Processing and release of insulin and insulin-like growth factor I by macro- and microvascular endothelial cells. Author: Banskota NK, Carpentier JL, King GL. Journal: Endocrinology; 1986 Nov; 119(5):1904-13. PubMed ID: 3533517. Abstract: Insulin and insulin-like growth factor I (IGF-I) processing by macro- and microvascular endothelial cells was investigated. Specific binding of insulin and IGF-I on the capillary endothelial cells derived from rat fat pads was 4 +/- 0.5% (+/- SE) and 4.3 +/- 0.3%/mg protein, respectively, in contrast to bovine aortic endothelial cells, which bound 9.3 +/- 0.3% IGF-I/mg protein. Both binding and processing of insulin and IGF-I were time and temperature dependent in macro- and microvascular endothelial cells. After 30 min at 37 C, between 40-50% of the bound IGF-I and insulin were internalized in both capillary and aortic endothelial cells, whereas 20-25% insulin and 15-20% IGF-I internalization were observed at 15 C. Less than 20% internalization was observed for both insulin and IGF-I at 4 C. Cellular inhibitors of hormone processing, such as chloroquine and monensin, enhanced cell-associated insulin at 37 C on the bovine aortic endothelial cells from 4.7% to 10.4 +/- 1% and 9.9 +/- 2% mg protein, respectively, at 60 min. Similarly, chloroquine and monensin increased the amount of [125I]IGF-I associated with aortic endothelial cells from 4.3 +/- 0.2% to 5.5 +/- 0.3% and 6.2 +/- 0.7%/mg protein, respectively. Chloroquine and monensin increased [125I]insulin associated with rat capillary endothelial cells from a control of 2.9 +/- 0.1% to 4.0 +/- 0.2% and 3.8% +/- 0.37%, respectively. No effect of chloroquine and monensin was observed on [125I]IGF-I binding to rat capillary endothelial cells. Leupeptin, a lysosomal protease inhibitor, did not affect insulin or IGF-I binding in either cell type. The internalized insulin and IGF-I were both rapidly released, with 70-80% of both hormones being detected in the medium by 120 min. The released hormones were mostly intact (greater than 80-90%), as assessed by trichloroacetic acid precipitability, gel filtration, and immunoprecipitation. Both insulin and IGF-I induced corresponding down-regulation of their receptors, as shown by a 66 +/- 7% decrease in insulin binding in the capillary endothelial cells and a 72 +/- 1% and 58 +/- 1% decrease in IGF-I binding in the aortic and capillary endothelial cells, respectively. Thus, macro- and microvascular endothelial cells bind and process insulin and IGF-I by degradative and nondegradative pathways. The predominance of the nondegradative pathway for the processing of insulin and IGF-I and the modulation of their receptors by physiological hormone concentrations suggested that endothelial cells may regulate the access of insulin and IGF-I to their target cells.[Abstract] [Full Text] [Related] [New Search]