These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis.
    Author: Li G, Zhu F, Wei P, Xue H, Chen N, Lu B, Deng H, Chen C, Yin X.
    Journal: Microorganisms; 2022 Mar 16; 10(3):. PubMed ID: 35336203.
    Abstract:
    Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg·L-1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg·L-1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg·L-1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg·L-1·h-1 after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances.
    [Abstract] [Full Text] [Related] [New Search]