These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distance-Based Detection of Cough, Wheeze, and Breath Sounds on Wearable Devices. Author: Xue B, Shi W, Chotirmall SH, Koh VCA, Ang YY, Tan RX, Ser W. Journal: Sensors (Basel); 2022 Mar 10; 22(6):. PubMed ID: 35336338. Abstract: Smart wearable sensors are essential for continuous health-monitoring applications and detection accuracy of symptoms and energy efficiency of processing algorithms are key challenges for such devices. While several machine-learning-based algorithms for the detection of abnormal breath sounds are reported in literature, they are either too computationally expensive to implement into a wearable device or inaccurate in multi-class detection. In this paper, a kernel-like minimum distance classifier (K-MDC) for acoustic signal processing in wearable devices was proposed. The proposed algorithm was tested with data acquired from open-source databases, participants, and hospitals. It was observed that the proposed K-MDC classifier achieves accurate detection in up to 91.23% of cases, and it reaches various detection accuracies with a fewer number of features compared with other classifiers. The proposed algorithm's low computational complexity and classification effectiveness translate to great potential for implementation in health-monitoring wearable devices.[Abstract] [Full Text] [Related] [New Search]