These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region.
    Author: Wei Z, Du Z, Wang L, Zhong W, Lin J, Xu Q, Xiao C.
    Journal: Sci Total Environ; 2022 Jul 20; 831():154761. PubMed ID: 35339557.
    Abstract:
    Sedimentary soil organic carbon (SOC) stored in thermokarst lakes and ponds (hereafter referred to as thaw lakes) across high-latitude/altitude permafrost areas is of global significance due to increasing thaw lake numbers and their high C vulnerability under climate warming. However, to date, little is known about the SOC storage in these lakes, which limits our better understanding of the fate of these active carbon in a warming future. Here, by combining large-scale field observation data and published deep (e.g., 0-300 cm) permafrost SOC data with a random forest (RF) machine learning technique, we provided the first comprehensive estimation of thaw lake SOC stocks to 3 m depth on the Tibetan Plateau. This study demonstrated that combining multiple environmental factors with the RF model could effectively predict the spatial distributions of the thaw lake SOC density values (SOCDs). The model results revealed that the soil respiration, normalized difference vegetation index (NDVI), and mean annual precipitation (MAP) were the most influential factors for predicting thaw lake SOCDs. In total, the sedimentary SOC stocks in the thaw lakes were approximately 52.62 Tg in the top 3 m, with 53% of the SOC stored in the upper layers (0-100 cm). The SOCDs generally exhibited high values in eastern Tibetan Plateau, and low values in mid- and western Tibetan Plateau, which were similar to the patterns of the land cover types that affected the SOCDs. We further found that the SOCDs of thaw lakes were generally higher than those of their surrounding permafrost soils at different layer depths, which could be ascribed to the erosion of soil particles or leaching solution from the thawing permafrost soils to lakes and/or enhanced vegetation growth at the lake bottom. This research highlights the necessity of explicitly considering the thaw lake SOC stocks in Earth system models for more comprehensive future projections of the carbon dynamics on the plateau.
    [Abstract] [Full Text] [Related] [New Search]