These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Further characterization of a steroid receptor-active protease from the mature rabbit epididymis. Author: Hendry WJ, Danzo BJ. Journal: J Steroid Biochem; 1986 Sep; 25(3):433-43. PubMed ID: 3534465. Abstract: The nucleomyofibrillar fraction of mature rabbit epididymides contains a salt-extractable and leupeptin-sensitive protease that alters the sedimentation coefficient of cytosolic steroid receptors. We refer to this modification as receptor conversion. The substrate used in these studies was cytosolic estrogen receptor obtained from frozen rabbit uteri. The unactivated form of the receptor exists as an oligomer under hypotonic (0.01 M KCl) conditions (S20,w congruent to 9.6, Stokes radius (Rs) congruent to 7.4 nm, Mr congruent to 320,000) and dissociates under hypertonic (0.4 M KCl) conditions to yield the steroid-binding monomer (S20,w congruent to 4.7, Rs congruent to 5.1 nm, Mr congruent to 104,000). According to analysis under hypotonic conditions, the epididymal protease disrupts the oligomeric architecture of the receptor and reduces the size of the steroid-binding monomer (S20,w congruent to 3.2, Rs congruent to 3.0 nm, Mr congruent to 42,000). The epididymal protease had no detectable effect on the structure of the proteins used as standards for the ultracentrifugal or gel filtration analyses. Although inhibited by leupeptin, the epididymal enzyme is not a typical thiol protease since it was unaffected by thiol-blocking agents (iodoacetamide and N-ethylmaleimide), and was partially inhibited by thiol-reducing agents (monothioglycerol and dithiothreitol). Calcium and magnesium ions alone, or in combination with ATP, had no effect on the activity of the protease. However, both cations selectively suppressed recovery of the oligomeric receptor form. These results, in conjunction with those from previous studies, serve to distinguish the epididymal protease from receptor-active proteases described in extracts of other animal tissues. Molybdate, at a concentration of 50 mM, blocked receptor conversion. The ability of the receptor to be stabilized by molybdate was lost following conversion. Finally, the epididymal protease appears to remove a portion of the estrogen receptor that is necessary for nucleotide-binding.[Abstract] [Full Text] [Related] [New Search]