These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 4D flow cardiovascular magnetic resonance derived energetics in the Fontan circulation correlate with exercise capacity and CMR-derived liver fibrosis/congestion. Author: Rijnberg FM, Westenberg JJM, van Assen HC, Juffermans JF, Kroft LJM, van den Boogaard PJ, Terol Espinosa de Los Monteros C, Warmerdam EG, Leiner T, Grotenhuis HB, Jongbloed MRM, Hazekamp MG, Roest AAW, Lamb HJ. Journal: J Cardiovasc Magn Reson; 2022 Mar 28; 24(1):21. PubMed ID: 35346249. Abstract: AIM: This study explores the relationship between in vivo 4D flow cardiovascular magnetic resonance (CMR) derived blood flow energetics in the total cavopulmonary connection (TCPC), exercise capacity and CMR-derived liver fibrosis/congestion. BACKGROUND: The Fontan circulation, in which both caval veins are directly connected with the pulmonary arteries (i.e. the TCPC) is the palliative approach for single ventricle patients. Blood flow efficiency in the TCPC has been associated with exercise capacity and liver fibrosis using computational fluid dynamic modelling. 4D flow CMR allows for assessment of in vivo blood flow energetics, including kinetic energy (KE) and viscous energy loss rate (EL). METHODS: Fontan patients were prospectively evaluated between 2018 and 2021 using a comprehensive cardiovascular and liver CMR protocol, including 4D flow imaging of the TCPC. Peak oxygen consumption (VO2) was determined using cardiopulmonary exercise testing (CPET). Iron-corrected whole liver T1 (cT1) mapping was performed as a marker of liver fibrosis/congestion. KE and EL in the TCPC were computed from 4D flow CMR and normalized for inflow. Furthermore, blood flow energetics were compared between standardized segments of the TCPC. RESULTS: Sixty-two Fontan patients were included (53% male, 17.3 ± 5.1 years). Maximal effort CPET was obtained in 50 patients (peak VO2 27.1 ± 6.2 ml/kg/min, 56 ± 12% of predicted). Both KE and EL in the entire TCPC (n = 28) were significantly correlated with cT1 (r = 0.50, p = 0.006 and r = 0.39, p = 0.04, respectively), peak VO2 (r = - 0.61, p = 0.003 and r = - 0.54, p = 0.009, respectively) and % predicted peak VO2 (r = - 0.44, p = 0.04 and r = - 0.46, p = 0.03, respectively). Segmental analysis indicated that the most adverse flow energetics were found in the Fontan tunnel and left pulmonary artery. CONCLUSIONS: Adverse 4D flow CMR derived KE and EL in the TCPC correlate with decreased exercise capacity and increased levels of liver fibrosis/congestion. 4D flow CMR is promising as a non-invasive screening tool for identification of patients with adverse TCPC flow efficiency.[Abstract] [Full Text] [Related] [New Search]