These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthetic Mechanisms in the Formation of SnTe Nanocrystals.
    Author: O'Neill SW, Krauss TD.
    Journal: J Am Chem Soc; 2022 Apr 13; 144(14):6251-6260. PubMed ID: 35348326.
    Abstract:
    Infrared active colloidal semiconducting nanocrystals (NCs) are important for applications including photodetectors and photovoltaics. While much research has been conducted on nanocrystalline materials such as the Pb and Hg chalcogenides, less toxic alternatives such as SnTe have been far less explored. Previous synthetic work on SnTe NCs have characterized photophysical properties of the nanoparticles. This study focuses on understanding the fundamental chemical mechanisms involved in SnTe NC formation, with the aim to improve synthetic outcomes. The solvent oleylamine, common to all SnTe syntheses, is found to form a highly reactive, heteroleptic Sn-oleylamine precursor that is the primary molecular Sn species initiating NC formation and growth. Further, the capping ligand oleic acid (OA) reacts with this amine to produce tin oxide (SnOx), facilitating the formation of an NC SnOx shell. Therefore, the use of OA during synthesis is counterproductive to the formation of stoichiometric SnTe nanoparticles. The knowledge of chemical reaction mechanisms creates a foundation for the production of high-quality, unoxidized, and stoichiometric SnTe NCs.
    [Abstract] [Full Text] [Related] [New Search]