These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: How Superhydrophobic Grooves Drive Single-Droplet Jumping. Author: Chu F, Yan X, Miljkovic N. Journal: Langmuir; 2022 Apr 12; 38(14):4452-4460. PubMed ID: 35348343. Abstract: Rapid shedding of microdroplets enhances the performance of self-cleaning, anti-icing, water-harvesting, and condensation heat-transfer surfaces. Coalescence-induced droplet jumping represents one of the most efficient microdroplet shedding approaches and is fundamentally limited by weak fluid-substrate dynamics, resulting in a departure velocity smaller than 0.3u, where u is the capillary-inertia-scaled droplet velocity. Laplace pressure-driven single-droplet jumping from rationally designed superhydrophobic grooves has been shown to break conventional capillary-inertia energy transfer paradigms by squeezing and launching single droplets independent of coalescence. However, this interesting droplet shedding mechanism remains poorly understood. Here, we investigate single-droplet jumping from superhydrophobic grooves by examining its dependence upon surface and droplet configurations. Using a volume of fluid (VOF) simulation framework benchmarked with optical visualizations, we verify the Laplace pressure contrast established within the groove-confined droplet that governs single-droplet jumping. An optimal departure velocity of 1.13u is achieved, well beyond what is currently available using condensation on homogeneous or hierarchical superhydrophobic structures. We further develop a jumping/non-jumping regime map in terms of surface wettability and initial droplet volume and demonstrate directional jumping under asymmetric confinement. Our work reveals key fluid-structure interactions required for the tuning of droplet jumping dynamics and guides the design of interfaces and materials for enhanced microdroplet shedding for a plethora of applications.[Abstract] [Full Text] [Related] [New Search]