These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cucurbit[6]uril-Supported Fe3O4 Magnetic Nanoparticles Catalyzed Green and Sustainable Synthesis of 2-Substituted Benzimidazoles via Acceptorless Dehydrogenative Coupling. Author: Verma S, Kujur S, Sharma R, Pathak DD. Journal: ACS Omega; 2022 Mar 22; 7(11):9754-9764. PubMed ID: 35350370. Abstract: A new composite, cucurbit[6]uril (CB[6])-supported magnetic nanoparticles, Fe3O4-CB[6], was synthesized via a co-precipitation method in air and fully characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, inductively coupled plasma-mass spectrometry, and vibrating sample magnetometry techniques. It has been found to be a highly efficient, economic, and sustainable heterogeneous catalyst and has been employed for the first time for the synthesis of a series of biologically important 2-substituted benzimidazoles from various benzyl alcohols and 1,2-diaminobenzenes under solvent-free conditions via acceptorless dehydrogenative coupling to afford the corresponding products in good to excellent yields (68-94%). The magnetic nature of the nanocomposite facilitates the facile recovery of the catalyst from the reaction mixture by an external magnet. The catalyst can be reused up to five times with negligible loss in its catalytic activity. All the isolated products were characterized by 1H and 13C{1H} NMR spectroscopy.[Abstract] [Full Text] [Related] [New Search]