These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biomass Carbon Magnetic Adsorbent Constructed by One-Step Activation Method for the Removal of Hg0 in Flue Gas. Author: Cui Y, Huo Q, Chen H, Chen S, Wang S, Wang J, Chang L, Han L, Xie W. Journal: ACS Omega; 2022 Mar 22; 7(11):9244-9253. PubMed ID: 35350372. Abstract: Elemental mercury (Hg0) emission from industrial boilers equipped in factories such as coal-fired power plants poses serious hazards to the environment and human health. Herein, an iron-modified biomass carbon (Fe/BC) magnetic adsorbent was prepared by a one-step method using pepper straw waste as raw material and potassium oxalate and ferric nitrate as activator and catalyst precursor, respectively. A fixed-bed reactor was used to evaluate the Hg0 removal performance of the Fe/BC adsorbent. The synthesized adsorbent showed a wide temperature window for Hg0 removal. In a N2 + O2 atmosphere, the removal efficiency toward Hg0 was 97.6% at 150 °C. Further, O2 or SO2 could promote the removal of Hg0, while NO could inhibit the conversion of Hg0 over the Fe/BC adsorbent. The consequence of XPS and Hg-TPD showed that lattice oxygen in Fe2O3 and chemisorbed oxygen were the main active sites for Hg0 removal, and HgO was the main mercury species on used Fe/BC. Moreover, Fe/BC adsorbent showed a good regeneration and magnetization performance, which was conducive to the cost reduction of actual industrial application. This study provides a facile approach for efficient removal of Hg0 using biomass-derived carbon material.[Abstract] [Full Text] [Related] [New Search]