These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic and nuclear magnetic resonance study of the interaction of NADP+ and NADPH with chicken liver fatty acid synthase. Author: Leanz GF, Hammes GG. Journal: Biochemistry; 1986 Sep 23; 25(19):5617-24. PubMed ID: 3535882. Abstract: The ionic strength dependence of the second-order rate constant for the association of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and chicken liver fatty acid synthase was determined. This rate constant is 7.2 X 10(7) M-1 s-1 at zero ionic strength and 25 degrees C; the effective charge at the cofactor binding sites is +0.8. The conformations of nicotinamide adenine dinucleotide phosphate (NADP+) and NADPH bound to the beta-ketoacyl and enoyl reductase sites were determined from transferred nuclear Overhauser effect measurements. Covalent modification of the enzyme with pyridoxal 5'-phosphate abolished cofactor binding at the enoyl reductase site; this permitted the cofactor conformations at the beta-ketoacyl and enoyl reductase sites to be distinguished. For NADP+ bound to the enzyme, the conformation of the nicotinamide-ribose bond is anti at the enoyl reductase site and syn at the beta-ketoacyl reductase site; the adenine-ribose bond is anti, and the sugar puckers are C3'-endo. Nicotinamide-adenine base stacking was not detected. Structural models of NADP+ at the beta-ketoacyl and enoyl reductase sites were constructed by using the distances calculated from the observed nuclear Overhauser effects. Because of the overlap of the resonances of several nonaromatic NADPH protons with the resonances of HDO and ribose protons, less extensive structural information was obtained for NADPH bound to the enzyme. However, the conformations of NADPH bound to the two reductases are qualitatively the same as those of NADP+, except that the nicotinamide moiety of NADPH is closer to being fully anti at the enoyl reductase site.[Abstract] [Full Text] [Related] [New Search]