These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioaugmentation for low C/N ratio wastewater treatment by combining endogenous partial denitrification (EPD) and denitrifying phosphorous removal (DPR) in the continuous A2/O - MBBR system. Author: Zhang M, Wan J, Fan Y, Yong D, Liu Y, Ji J, Wu Q, Sun H, Wu J. Journal: J Environ Manage; 2022 Jun 15; 312():114920. PubMed ID: 35358845. Abstract: Endogenous partial denitrification (EPD) and denitrifying phosphorous removal (DPR) were combined in a novel A2/O - MBBR (Anaerobic Anoxic Oxic - Moving Bed Biofilm Reactor) system for low carbon/nitrogen (C/N) ratio wastewater treatment. The DPR performance was compared and the nutrient metabolism was elucidated based on the optimization of hydraulic retention time (HRT, 4-12 h) and nitrate recycling (R, 200%-600%). In the continuous-flow, the nitrate (NO3-) denitrification accompanied by nitrite (NO2-, via EPD) accumulation with the nitrate-to-nitrite transformation ratio (NTR) of 35.87%-43.31% in the anoxic zones. At HRT of 12 h with R of 500%, batch test initially revealed the DPR mechanism using both NO3- and NO2- as electron acceptor, where denitrifying phosphorus accumulation organisms (DPAOs) and denitrifying glycogen accumulation organisms (DGAOs) were the main contributors for EPD with incomplete denitrification (NO3- → NO2-). Furthermore, stoichiometry-based functional bacteria analysis displayed that higher bioactivity of DPAOs (NO2-→N2, 57.30%; NO3-→N2, 35.85%) over DGAOs (NO3-→N2, 6.85%) facilitated the anoxic NO3- reduction. Microbial community analysis suggested that Cluster I of Defluviicoccus-GAO group (∼4%) was responsible for stable NO2- accumulation performance via EPD, while increased Accumulibacter-PAO group (by ∼15%) contributed to the advanced nutrient removal. Based on the achievement of NO2- accumulation, the application feasibility of integrated EPD - DPR - Anammox for deep-level nutrient removal was discussed.[Abstract] [Full Text] [Related] [New Search]