These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Flumioxazin, a PPO inhibitor: A weight-of-evidence consideration of its mode of action as a developmental toxicant in the rat and its relevance to humans.
    Author: Iwashita K, Hosokawa Y, Ihara R, Miyamoto T, Otani M, Abe J, Asano K, Mercier O, Miyata K, Barlow S.
    Journal: Toxicology; 2022 Apr 30; 472():153160. PubMed ID: 35367320.
    Abstract:
    Flumioxazin, is a herbicide that has inhibitory activity on protoporphyrinogen oxidase (PPO), a key enzyme in the biosynthetic pathway for heme. Flumioxazin induces anemia and developmental toxicity in rats, including ventricular septal defect and embryofetal death. Studies to elucidate the mode of action (MOA) of flumioxazin as a developmental toxicant and to evaluate its relevance to humans have been undertaken. The MOA in the rat has now been elucidated. The first key event is PPO inhibition, which results in reduced heme synthesis in embryonic erythroblasts. The critical window for this effect is gestational day 12 when almost all erythroblasts are at the polychromatophilic stage, synthesizing heme very actively. Embryonic anemia/hypoxemia is induced and the heart pumps more strongly as a compensatory action during organogenesis, leading to thinning of the ventricular walls and failure of the interventricular septum to build completely and close. Investigations showed that this MOA is specific to rats and has no relevancy to humans. Flumioxazin inhibited PPO in rat hepatocyte mitochondria more strongly than in human. A 3-dimensional molecular simulation revealed that species differences in binding affinity of flumioxazin to PPO, observed previously in vitro, were due to differences in binding free energy. In vitro studies using several types of rat and human cells (erythroblasts derived from erythroleukemia cell lines, cord blood, or pluripotent stem cells), showed that flumioxazin decreased heme synthesis in rat cells but not in human cells, demonstrating a clear, qualitative species difference. Considering all available information, including data from PBPK modelling in rat and human, as well as the fact that anemia is not a symptom in patients with variegate porphyria, a congenital hereditary PPO defect, shows that the sequence of events leading to adverse effects in the rat embryo and fetus are very unlikely to occur in humans.
    [Abstract] [Full Text] [Related] [New Search]