These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of glucose transport in muscle by prolonged exposure to insulin. Effects of glucose and insulin concentrations.
    Author: Young DA, Uhl JJ, Cartee GD, Holloszy JO.
    Journal: J Biol Chem; 1986 Dec 05; 261(34):16049-53. PubMed ID: 3536920.
    Abstract:
    Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.
    [Abstract] [Full Text] [Related] [New Search]