These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production.
    Author: Tressel T, Thompson R, Zieske LR, Menendez MI, Davis L.
    Journal: J Biol Chem; 1986 Dec 15; 261(35):16428-37. PubMed ID: 3536927.
    Abstract:
    A mixture of threonine dehydrogenase and aminoacetone synthetase will catalyze the conversion of L-threonine to glycine. The overall reaction likely involves the conversion of L-threonine, NAD+, and CoA to glycine, NADH, and acetyl-CoA. Physical separation of L-threonine dehydrogenase from aminoacetone synthetase results in the formation of aminoacetone and CO2 from their substrates. A physical interaction between threonine dehydrogenase and aminoacetone synthetase has been demonstrated by gel permeation chromatography and fluorescence polarization. Polarization of fluorescence measurements of threonine dehydrogenase and aminoacetone synthetase labeled with fluorescein isothiocyanate indicated the formation of a soluble active complex, with an apparent dissociation constant (Kd) of 5-10 nM and an apparent stoichiometry of 2 aminoacetone synthetase dimers/1 threonine dehydrogenase tetramer. Chemical experiments have identified aminoacetone as the enzymatic product of L-threonine dehydrogenase acting on L-threonine. These experiments involved trapping pyrrole derivatives, [3H]NaBH4 reduction, and coupling with plasma amine oxidase. Kinetic experiments also showed NADH, CO2, and aminoacetone to inhibit threonine dehydrogenase in a manner consistent with an ordered Bi-Ter kinetic mechanism. NAD+ is the lead substrate followed by threonine, and the products are released in the order: CO2, aminoacetone, and NADH.
    [Abstract] [Full Text] [Related] [New Search]