These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tremella polysaccharides-coated zein nanoparticles for enhancing stability and bioaccessibility of curcumin. Author: Li D, Wei Z, Sun J, Xue C. Journal: Curr Res Food Sci; 2022; 5():611-618. PubMed ID: 35373147. Abstract: The purpose of the present research was to examine the ability of Tremella polysaccharide (TP) to stabilize zein nanoparticles (zein NPs) and appraise the performance of zein/Tremella polysaccharide nanoparticles (zein/TP NPs) in terms of encapsulating and delivering curcumin. In this study, the zein/TP NPs were fabricated based on the anti-solvent precipitation method, which were used to protect and deliver curcumin. The results suggested that TP could be deposited on the surface of zein NPs by virtue of electrostatic interaction, so as to improve the hydrophilicity of zein, provide better protection for curcumin and assemble more stable nanoparticles. Compared with zein NPs (54.73%), the zein/TP NPs exhibited higher encapsulation efficiency of curcumin (93.34%) and excellent re-dispersibility. Furthermore, the retention rate of curcumin encapsulated in zein/TP NPs reached 80.78% and 90.74% after UV irradiation and 80 °C heat treatment for 2 h, respectively, which proved that the addition of TP significantly improved the stability of curcumin. Meanwhile, in vitro digestion study demonstrated that the bioaccessibility of curcumin encapsulated in zein/TP NPs increased by 37.36% compared with in zein NPs. Therefore, the zein/TP NPs may be served as an effective and potential carrier for the delivery of nutraceuticals.[Abstract] [Full Text] [Related] [New Search]