These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ability of guanine nucleotide derivatives to bind and activate bovine transducin.
    Author: Kelleher DJ, Dudycz LW, Wright GE, Johnson GL.
    Journal: Mol Pharmacol; 1986 Dec; 30(6):603-8. PubMed ID: 3537683.
    Abstract:
    Several guanine nucleotide analogs, in one series of which a hydrogen on the 2-amino group is replaced with the p-n-butylphenyl group (BuPGNP derivatives), were used to probe the GTP binding domain of bovine transducin. The order of apparent binding affinities in a series of nucleoside 5'-triphosphates was GTP gamma S greater than GTP approximately BuPGTP greater than dGTP approximately ITP much greater than ATP, values which were 30-100 times higher than affinities of the corresponding 5'-diphosphates. A derivative bearing a 6-aminohexylamino group on the gamma-phosphate, BuPGTP X C6, had a 60-fold lower affinity compared to BuPGTP. In contrast, the p-n-butylphenyl substituent on the 2-amino group had little effect on the binding affinity relative to GTP. Substitutions at the 2-amino group had little effect on either the hydrolysis of the derivatives by the GTPase activity associated with the alpha-subunit of transducin or the activation of cGMP phosphodesterase. The results indicate that the GTP binding domain of transducin is similar in tertiary structure to the corresponding domain of EF-Tu. The 5'-phosphates of GTP are oriented in the binding site of transducin so that the bulky C6 group of BuPGTP X C6 dramatically interferes with binding. The 2-amino group on the guanine ring is probably located at the periphery of the binding site, with the p-n-butylphenyl substituent of BuPGTP facing outward and only weakly interacting with the protein. BuPGTP should be an excellent parent compound for development of novel probes of G-protein interactions with other cellular proteins involved in receptor signal transduction.
    [Abstract] [Full Text] [Related] [New Search]