These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunomodulatory activity of Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed polysaccharide fraction through the activation of the MAPK signaling pathway in RAW264.7 macrophages. Author: Zongo AW, Zogona D, Zhang Z, Youssef M, Zhou P, Chen Y, Geng F, Chen Y, Li J, Li B. Journal: Food Funct; 2022 Apr 20; 13(8):4664-4677. PubMed ID: 35377370. Abstract: Senegalia macrostachya (Reichenb. ex DC.) Kyal. & Boatwr seed (SMS) is a wild legume used as food and medicine in many African countries. In the current study, a novel polysaccharide (SMSP2) was extracted from SMS using hot water and purified with DEAE-52 cellulose. Its structure was characterized, and the immunomodulatory activity and possible molecular mechanism in murine macrophage RAW264.7 were explored. The results revealed that SMSP2 was a uronic acid-rich polysaccharide (51.6%, w/w) with a molecular weight of 52.07 kDa. The neutral sugars were mainly arabinose, xylose, mannose, and galactose at a molar ratio of 1.00 : 0.84 : 0.90 : 0.07. Interestingly, SMSP2 treatment markedly promoted macrophage proliferation and phagocytosis and induced the expression of inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10. SMSP2-induced macrophage stimulation occurs through the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, macrophage surface complement receptor 3 (CR3) might play an important role in SMSP2-induced macrophage activation. This study revealed that SMSP2 is a potent immunomodulator, which could be used as a functional food and a pharmaceutical adjuvant in treating immune-compromising diseases.[Abstract] [Full Text] [Related] [New Search]