These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interlayer-Expanded MoS2 Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO2 as High-Performance Anode for Sodium-Ion Batteries. Author: Zhang H, Song J, Li J, Feng J, Ma Y, Ma L, Liu H, Qin Y, Zhao X, Wang F. Journal: ACS Appl Mater Interfaces; 2022 Apr 13; 14(14):16300-16309. PubMed ID: 35377594. Abstract: As a promising energy-storage and conversion anode material for high-power sodium-ion batteries operated at room temperature, the practical application of layered molybdenum disulfide (MoS2) is hindered by volumetric expansion during cycling. To address this issue, a rational design of MoS2 with enlarged lattice spacing aligned vertically on hierarchically porous Ti3C2Tx MXene nanosheets with partially oxidized rutile and anatase dual-phased TiO2 (MoS2@MXene@D-TiO2) composites via one-step hydrothermal method without following anneal process is reported. This unique "plane-to-surface" structure accomplishes hindering MoS2 from aggregating and restacking, enabling sufficient electrode/electrolyte interaction simultaneously. Meanwhile, the heterogeneous structure among dual-phased TiO2, MoS2, and MXene could constitute a built-in electric field, promoting high Na+ transportation. As a result, the as-constructed 3D MoS2@MXene@D-TiO2 heterostructure delivers admirable high-rate reversible capacity (359.6 mAh g-1 up to 5 A g-1) at room temperature, excellent cycling stability (about 200 mAh g-1) at a low temperature of -30 °C, and superior electrochemical performance in Na+ full batteries by coupling with a Na3V2(PO4)3 cathode. This ingenious design is clean and facile to inspire the potential of advanced low-dimensional heterogeneous structure electrode materials in the application of high-performance sodium-ion batteries.[Abstract] [Full Text] [Related] [New Search]