These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background.
    Author: Muntaha SN, Li X, Compart J, Apriyanto A, Fettke J.
    Journal: Plant Physiol Biochem; 2022 Jun 01; 180():35-41. PubMed ID: 35378390.
    Abstract:
    The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.
    [Abstract] [Full Text] [Related] [New Search]