These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Xuebijing injection improve pulmonary vascular barrier function in ARDS by up-regulating claudin-5 expression through PI3K/Akt/FOXO1 signaling pathway]. Author: Geng P, Xiong J, Yu F, Wang H, Wang Y, Xu M, Ling B, Ma A, Zheng R. Journal: Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Feb; 34(2):145-150. PubMed ID: 35387719. Abstract: OBJECTIVE: To study the signaling pathway of the up-regulation of claudin-5 expression by Xuebijing injection. METHODS: Animal and cell models of acute respiratory distress syndrome (ARDS) were induced by lipopolysaccharide (LPS). (1) In vivo study, 20 male Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group, LPS group (LPS injection 10 mg/kg for 12 hours), Xuebijing control group (Xuebijing injection 1 mg/kg, twice a day, for 3 days), and Xuebijing intervention group (LPS injection after pretreatment of Xuebijing injection), according to random number method with 5 rats in each group. The lung tissues were taken to detect lung dry/wet weight ratio (W/D) and the morphological changes in each group. Claudin-5, phosphorylated forkhead box transcription factor O1 (p-FOXO1), total FOXO1 (t-FOXO1), phosphorylated Akt (p-Akt) and total Akt (t-Akt) in lung tissues were detected by immunohistochemical staining (IHC) and Western blotting. (2) In vitro study, human pulmonary microvascular endothelial cells (HPMECs) were divided into 6 groups (5 holes in each group): control group, Xubijing control group (incubated with 2 g/L Xubijing for 24 hours), phosphoinositide 3-kinases (PI3K) signaling pathway LY294002 control group (incubated with 10 μmol/L LY294002 for 1 hour), LPS group (incubated with 1 mg/L LPS for 12 hours), Xubijing intervention group (incubated with 2 g/L Xuebijing for 24 hours, then with 1 mg/L LPS for 12 hours) and LY294002 intervention group (incubated with 10 μmol/L LY294002 for 1 hour, then with 2 g/L and Xubijing for 24 hours, and then with 1 mg/L LPS for 12 hours). The expression levels of claudin-5, p-FOXO1, t-FOXO1, p-Akt and t-Akt of HPMECs in each group were assessed by Western blotting. RESULTS: In vivo study: (1) Compared with the control group, the lung W/D ratio increased significantly in LPS group (6.79±0.42 vs. 4.19±0.13), and decreased significantly after the intervention of Xuebijing (4.92±0.38 vs. 6.79±0.42, P < 0.01). (2) Morphological changes of lung tissue: compared with the control group, the injury of lung tissue in LPS group was more serious, which was significantly improved after Xuebijing intervention. (3) Expression levels of claudin-5, p-Akt/t-Akt and p-FOXO1/t-FOXO1: the expression levels of claudin-5, p-Akt/t-Akt and p-FOXO1/t-FOXO1 in LPS group were significantly decreased as compared with the control group (claudin-5/GAPDH: 0.33±0.03 vs. 1.03±0.07, p-Akt/t-Akt: 0.18±0.02 vs. 1.01±0.13, p-FOXO1/t-FOXO1: 0.16±0.06 vs. 1.00±0.19, all P < 0.01). After the intervention of Xuebijing, the expression levels were significantly increased as compared with the LPS group (claudin-5/GAPDH: 0.53±0.05 vs. 0.33±0.03, p-Akt/t-Akt: 0.56±0.12 vs. 0.18±0.02, p-FOXO1/t-FOXO1: 0.68±0.10 vs. 0.16±0.06, all P < 0.01). In vitro study: compared with the control group, the expression level of claudin-5 in the LPS group was significantly decreased (claudin-5/β-actin: 0.45±0.03 vs. 1.01±0.15, P < 0.01), and the expression level of claudin-5 in Xuebijing intervention group was also significantly decreased (claudin-5/β-actin: 0.80±0.08 vs. 1.01±0.15, P < 0.01). After the intervention of LY294002, the expression of claudin-5 was significantly decreased as compared with the Xubijing intervention group (claudin-5/β-actin: 0.41±0.02 vs. 0.80±0.08, P < 0.01). CONCLUSIONS: Xuebijing injection improve pulmonary vascular barrier function in rats with ARDS by up-regulating claudin-5 expression through PI3K/Akt/FOXO1 signaling pathway.[Abstract] [Full Text] [Related] [New Search]