These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection. Author: Sun S, Wang W, Hu X, Zheng C, Xiang Q, Yang Q, Zhang J, Shen ZF, Wu ZS. Journal: Analyst; 2022 May 03; 147(9):1937-1943. PubMed ID: 35389390. Abstract: The detection of disease-related biomarkers, including microRNA (miRNA), is of crucial importance in reducing the morbidity and mortality of cancer. Thus, there is a great desire to develop an efficient and simple sensing method to fulfill the detection of miRNAs. In this study, a novel amplification assay strategy is demonstrated for the highly sensitive detection of miRNA-21 by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification (SMB-NRCA). A circular padlock probe (CPP) contains a target recognition sequence, two binding sites for nicking endonuclease and three hybridization sites for SMBs. miRNA-21 can hybridize with the CPP and act as polymerization primer that initiates the rolling circle amplification (RCA) reaction and two different nicking-mediated RCA processes, releasing a large amount of SMBs and leading to a significantly amplified fluorescence signal originating from the restoration of pre-quenched fluorescence via their structural switching. Via the signal amplification based on the combination of RCA, nicking and SDA, this assay system can quantitatively detect miRNA-21 in a linear change of three orders of magnitude with a detection limit of 1 pM. The assay specificity is very high so that there is no interference from coexisting miRNAs. Moreover, the sensing system possesses ideal anti-interference ability in complicated milieux such as human serum. The novel sensing strategy shows tremendous prospects for application in tumor diagnosis and clinical therapy guidance.[Abstract] [Full Text] [Related] [New Search]