These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication of Zein/Mesona chinensis Polysaccharide Nanoparticles: Physical Characteristics and Delivery of Quercetin. Author: Yang J, Lin J, Zhang J, Chen X, Wang Y, Shen M, Xie J. Journal: ACS Appl Bio Mater; 2022 Apr 18; 5(4):1817-1828. PubMed ID: 35390251. Abstract: Polysaccharides are considered to be highly stable, nontoxic, hydrophilic, biodegradable, and biocompatible, coupled with the diverse chemical functions they contain, making them promising biomaterials for the development of nutrient delivery systems. In this study, we prepared zein-Mesona chinensis polysaccharide (MCP) nanoparticles by antisolvent precipitation. Zien and MCP self-assembly formed smooth spherical nanoparticles (Z-M NPs) under hydrophobic, hydrogen bonding, and electrostatic interactions. Results showed that MCP concentration (0% to 0.2%), pH (3 to 7), and addition sequence have a great effect on the particle size (165 to 463 nm), potential (-18.46 to -38.6 mV), and rheological properties of Z-M NPs. Moreover, Z-M NPs had good redispersibility and favorable encapsulation efficiency (92.8%) for quercetin. Compared with free quercetin, quercetin-loaded Z-M NPs significantly downregulated the expression of NO, TNF-α, IL-1β, and IL-6 in RAW264.7 induced by lipopolysaccharide, which resulted in higher in vitro anti-inflammatory activity. Therefore, Z-M NPs have the potential to be applied to encapsulate hydrophobic natural phytochemicals as food-based functional biomaterials.[Abstract] [Full Text] [Related] [New Search]