These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lower Extremity and Trunk Electromyographic Muscle Activity During Performance of the Y-Balance Test on Stable and Unstable Surfaces.
    Author: Kaur N, Bhanot K, Ferreira G.
    Journal: Int J Sports Phys Ther; 2022; 17(3):483-492. PubMed ID: 35391869.
    Abstract:
    BACKGROUND: The Star Excursion Balance Test (SEBT) has been used as a rehabilitation exercise. To improve its efficacy, efficiency, and method variations, the Y-Balance Test (YBT) with anterior (A), posterolateral (PL), and posteromedial (PM) directions of the SEBT has been recommended. Electromyographic activity has been reported to change when the same task is performed on various surfaces. HYPOTHESIS/PURPOSE: To compare the EMG activity of trunk and LE muscles during the performance of the YBT on stable and unstable surfaces. STUDY DESIGN: Cross-Sectional study. METHODS: Healthy adults with no history of chronic ankle instability were recruited for the study. Surface electromyography was collected for bilateral (ipsilateral [i] and contralateral [c]) rectus abdominis (RA), external oblique (EOB), erector spinae (ES). While, gluteus maximus (GMAX), gluteus medius (GMED), medial hamstrings (MH), biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), anterior tibialis (AT), and medial gastrocnemius (MG) on the stance leg (ipsilateral side), during the performance of the YBT. The unstable surface was introduced using a Thera-Band stability trainer. Differences in electromyography were examined for each reach direction and muscle between the stable and unstable surfaces (p≤ 0.05). RESULTS: Twenty (10 male, 10 female) subjects participated (age: 27.5 ± 4.0 years, height:167 ± 1.0 cm, weight: 66.5 ± 13.0 kg, body fat: 14.1 ± 6.2%). Significantly higher muscle activity for the unstable surface (p<0.05) with moderate to large effect sizes were observed for the following muscles in the A direction: GMED, GMAX, VM, RF, and MG; PL direction: iEOB, iES, cES, GMED, BF, VM, RF, and MG; and PM direction iEOB, iES, GMED, BF, VM, and RF. Significantly higher muscle activity for the stable surface (p = 0.007) was observed in MH muscle in the A direction. No significant differences (p>0.05) between the stable and unstable surfaces were observed in iRA, cRA, cEOB, VL, and AT for any of the directions of the YBT. CONCLUSION: An increase in muscle activity was observed during YBT on unstable versus stable surfaces for some muscles. LEVEL OF EVIDENCE: 2B.
    [Abstract] [Full Text] [Related] [New Search]