These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous adsorption of As(III) and Cd(II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects. Author: Tian X, Xie Q, Chai G, Li G. Journal: Sci Rep; 2022 Apr 08; 12(1):5918. PubMed ID: 35396518. Abstract: A simply synthetic ferrihydrite-modified biochar (Fh@BC) was applied to simultaneously remove As(III) and Cd(II) from the aqueous solution, and then to explore the mutual effects between As(III) and Cd(II) and the corresponding mechanisms. The Langmuir maximum adsorption capacities of As(III) and Cd(II) in the single adsorbate solution were 18.38 and 18.18 mg g-1, respectively. It demonstrated that Fh@BC was a potential absorbent material for simultaneous removal of As(III) and Cd(II) in aqueous solution. According to the XRF, SEM-EDS, FTIR, XRD, and XPS analysis, the mechanisms of simultaneous removal of As(III) and Cd(II) by Fh@BC could be attributable to the cation exchange, complexation with R-OH and Fe-OH, and oxidation. Moreover, the mutual effect experiment indicated that Cd(II) and As(III) adsorption on Fh@BC in the binary solution exhibited competition, facilitation and synergy, depending on their ratios and added sequences. The mechanisms of facilitation and synergy between Cd(II) and As(III) might include the electrostatic interaction and the formation of both type A or type B ternary surface complexes on the Fh@BC.[Abstract] [Full Text] [Related] [New Search]