These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model. Author: Cui YR, Qu F, Zhong WJ, Yang HH, Zeng J, Huang JH, Liu J, Zhang MY, Zhou Y, Guan CX. Journal: Phytomedicine; 2022 Jun; 100():154074. PubMed ID: 35397283. Abstract: RATIONALE: Alveolar epithelial cell death, inflammation, and oxidative stress are typical features of acute lung injury (ALI). Aloperine (Alo), an alkaloid isolated from Sophora alopecuroides, has been reported to display various biological effects, such as anti-inflammatory, immunoregulatory, and anti-oxidant properties. In this study, we investigated the effects and mechanisms of Alo in treating a lipopolysaccharide (LPS)-induced ALI in a murine model. METHODS: The effects of Alo in LPS-induced ALI were investigated in C57BL/6 mice. The RIPK1 inhibitor (Nec-1) and the RIPK3 inhibitor (GSK'872) were used to evaluate the relationship of necroptosis, NF-κB activation, and PDC subunits in LPS-treated mouse alveolar epithelial cells (MLE-12). Then the effects of Alo on necroptosis, inflammation, and oxidative stress of LPS-stimulated MLE-12 cells were evaluated. RESULTS: Alo significantly attenuated histopathological lung injuries and reduced lung wet/dry ratio in LPS-induced ALI mice. Alo also remarkedly reduced total protein and neutrophils recruitment in bronchoalveolar lavage fluid of ALI mice. Meanwhile, Alo ameliorated the LPS-induced necroptosis in the lungs of ALI mice. The RIPK3 inhibitor GSK'872, but not the RIPK1 inhibitor Nec-1, reversed LPS-induced p65 phosphorylation and translocation to the nucleus in MLE-12 cells. GSK'872 also reversed the LPS-induced increase in ROS and binding of RIPK3 and PDC subunits in MLE-12 cells. Moreover, Alo down-regulated the levels of p-RIPK1, p-RIPK3, p-MLKL, p-p65, the translocation of p65 to the nucleus, and reduced the expression of IL-6 and IL-8 in LPS-stimulated MLE-12 cells. Alo also inhibited the binding of RIPK3 and PDC-E1α, PDC-E1β, PDC-E2, and PDC-E3 and the ROS production in LPS-treated MLE-12 cells. CONCLUSION: The present study validated the beneficial effects of Alo on LPS-induced ALI , suggesting Alo may be a new drug candidate against ALI.[Abstract] [Full Text] [Related] [New Search]