These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence of a liquid-liquid phase transition in H[Formula: see text]O and D[Formula: see text]O from path-integral molecular dynamics simulations. Author: Eltareb A, Lopez GE, Giovambattista N. Journal: Sci Rep; 2022 Apr 09; 12(1):6004. PubMed ID: 35397618. Abstract: We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H[Formula: see text]O and D[Formula: see text]O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density [Formula: see text], isothermal compressibility [Formula: see text], and self-diffusion coefficients D(T) of H[Formula: see text]O and D[Formula: see text]O are in excellent agreement with available experimental data; the isobaric heat capacity [Formula: see text] obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H[Formula: see text]O and D[Formula: see text]O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H[Formula: see text]O and D[Formula: see text]O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H[Formula: see text]O, from PIMD simulations, is located at [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]. Isotope substitution effects are important; the LLCP location in q-TIP4P/F D[Formula: see text]O is estimated to be [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]. Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water, [Formula: see text] MPa, [Formula: see text] K, and [Formula: see text] g/cm[Formula: see text]). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of [Formula: see text] for D[Formula: see text]O and, particularly, H[Formula: see text]O suggest that improved water models are needed for the study of supercooled water.[Abstract] [Full Text] [Related] [New Search]