These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment. Author: Fan Z, Zeng W, Liu H, Jia Y, Peng Y. Journal: Water Res; 2022 Jun 15; 217():118376. PubMed ID: 35405552. Abstract: A novel process was developed for real domestic wastewater and waste activated sludge (WAS) treatment based on partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN). After 246 days of operation, the effluent concentrations of NH4+-N, NO2--N and NO3--N were below detection limits (0.1 mg/L), and the effluent concentration of PO43--P was 0.1 mg/L without the addition of external carbon source in PDA-PFPN system. Moreover, the sludge reduction efficiency reached 48.1% due to fermentation. The nitrite accumulation ratios by ammonia oxidation and nitrate reduction pathway were 60.6% and 87%, respectively. Intracellular metabolites measured by liquid chromatography mass spectrometer (LC-MS/MS) suggested that different intracellular amino acids were stored and consumed at different duration, and intracellular Valine, Glycine and Lysine were not utilized in oxic stage. Results of flow cytometry showed that the proportion of intact cells decreased from 94.7% to 82.9%, and necrotic cells increased from 5.3% to 17.1% with the increase of DNA content in sludge supernatant and cell decay rate, indicating the occurrence of cell death and lysis and leading to WAS reduction. Analysis of transcriptional community composition revealed that partial denitrification bacteria (Thauera), anammox bacteria (Candidatus Brocadia and Candidatus Kuenenia), simultaneous phosphorus removal and fermentation bacteria (Tetrasphaera) and partial nitrification bacteria (Nitrosomonas) coexisted and actually worked in PDA-PFPN system. The novel PDA-PFPN process simultaneously achieved highly efficient nitrogen and phosphorus removal and WAS reduction without the addition of external carbon source, which greatly reduced the operation cost of carbon source dosing and WAS treatment in wastewater treatment.[Abstract] [Full Text] [Related] [New Search]