These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection.
    Author: Li J, Luo M, Yang H, Ma C, Cai R, Tan W.
    Journal: Anal Chem; 2022 Apr 26; 94(16):6410-6416. PubMed ID: 35420408.
    Abstract:
    Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.
    [Abstract] [Full Text] [Related] [New Search]